亚马逊云科技全托管生成式AI服务 Amazon Bedrock正式可用

亚马逊云科技宣布推出五项生成式 AI 创新,使各种规模的企业都可以构建新的生成式 AI 应用程序,提高员工生产力并完成业务转型。这五项创新包括:亚马逊云科技全面托管服务 Amazon Bedrock 正式可用,通过统一的应用程序编程接口(API)提供来自领先 AI 公司的基础模型(FM);亚马逊云科技宣布 Amazon Titan Embeddings 模型正式可用,为客户提供更多基础模型选择;Amazon Bedrock 最新引入了 Meta Llama 2 模型,这是第一个通过 API 提供完全托管 Meta Llama 2 模型的服务;AI 编程助手 Amazon CodeWhisperer 的新功能即将提供预览,可以根据企业的内部代码库安全地定制 CodeWhisperer 的代码建议,助力开发人员从生成式 AI 中获得更大价值;Amazon QuickSight 的生成式 BI 创作功能现已推出预览版,可以提高业务分析师的工作效率。

这一功能是云原生构建的统一 BI 服务,使客户能够通过自然语言简单地描述他们想要的内容,从而创建可视化内容、格式化图表、执行计算等。从 Amazon Bedrock、Amazon Titan Embeddings,再到 Amazon CodeWhisperer 和 Amazon QuickSight,这些创新增强了亚马逊云科技在生成式 AI 堆栈各个层面的能力,无论任何规模的企业都可在获得企业级安全和隐私保护的同时,选择模型并进行模型定制。

一、Amazon Bedrock 正式可用 帮助更多客户构建和扩展生成式AI应用程序

Amazon Bedrock 是一项完全托管的服务,提供了来自众多领先 AI 公司(包括 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和亚马逊)面向海外业务的的高性能基础模型,以及企业构建生成式 AI 应用程序所需的一系列功能,能够在实现简化开发的同时确保隐私性和安全性。基础模型具有良好的适用性,可为信息搜索、内容创建及药物发现等诸多领域提供支持。但是对于许多希望利用生成式 AI 的企业来说,尚有一些问题需要解决。首先,它们需要简单直观的选取和访问高性能基础模型,满足其场景需求且表现优异;其次,客户希望应用程序实现无缝集成,无需管理庞大的基础设施集群或花费大量成本;最后,客户希望借助基础模型并结合自身数据来轻松构建差异化的应用程序,而这些客户用于定制的数据无疑是非常宝贵的资产,具有知识产权,因此在使用过程中必须做到全面保护,在确保安全和隐私的同时,保证客户对数据共享和使用方式拥有控制权。

借助 Amazon Bedrock 的完善功能,企业能够更方便、轻松地尝试多种领先的基础模型,使用自己的专有数据定制模型。此外,Amazon Bedrock 还提供差异化能力,例如无需再编写任何代码便可创建的托管代理(AI agent),它可以执行复杂任务,如旅行预订、处理保险索赔、策划广告活动和管理库存等。由于 Amazon Bedrock 采用无服务器(serverless)技术,客户不必管理任何基础设施,就可以使用已经熟悉的亚马逊云科技服务将生成式 AI 能力安全地集成和部署到应用程序中。

二、Amazon Bedrock通过 Amazon Titan Embeddings 和 Llama 2 进一步扩大可选模型范围

事实上,没有任何一个单一模型可以适用于所有的应用场景。因此,为了挖掘生成式 AI 的价值,企业往往需要访问多个模型,根据自己的要求寻找最适合的那一个。为此,Amazon Bedrock 让出海客户只需通过单一 API 就能找到和测试 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和亚马逊提供的领先的基础模型。此外,亚马逊云科技近日还宣布了 Anthropic 未来的所有基础模型都将在 Amazon Bedrock 上可用,并为亚马逊云科技出海客户提供模型定制和微调等特殊功能的优先访问。而现在起,Amazon Bedrock 再次引入新的基础模型带来更多选择:

1、Amazon Titan Embeddings 现正式可用

Amazon Titan 基础模型是由亚马逊云科技在大型数据集上创建和预训练的一系列模型,可以支持各种应用场景。作为这些模型中第一个正式可用的模型,Amazon Titan Embeddings 是一种大语言模型(LLM),它将文本转换成被称为嵌入向量(embeddings)的数值表示,以支持检索增强生成(RAG)的应用场景。基础模型虽然适用于多种任务,但却只能根据从训练数据和提示词上下文中学到的信息来回答问题。一旦这些回答需要利用高时效性的知识或专有数据时,其有效性就会受限。为了能通过扩展数据来改进基础模型的回答,许多企业将目光转向 RAG ——这一流行的模型定制技术能将基础模型连接到可被引用的知识库,从而改进响应效果。要开始使用 RAG,客户必须先访问一个嵌入模型,将数据转换成嵌入向量,使基础模型更容易理解数据之间的语义和关系。然而,构建嵌入模型需要大量的数据和资源,以及深厚的机器学习专业知识,因此很多客户很难完成自行构建,也就无法实现 RAG。Amazon Titan Embeddings 使客户能够更简单地启用 RAG,以便利用专有数据扩展各种基础模型的能力。Amazon Titan Embeddings 支持超过25种语言和多达8192个 token 的上下文长度,非常适合基于企业的应用场景处理单个单词、短语或整个文档。该模型可返回1536个维度的输出向量,确保高度准确性的同时还专为实现更低延迟和更优性价比进行了优化。

2、Llama 2 即将在未来几周推出

Amazon Bedrock 是业界首个通过托管 API 提供 Meta 下一代大语言模型 Llama 2 的完全托管的生成式 AI 服务。Llama 2 模型比之前的 Llama 模型有了显著改进,包括使用了比原始训练多40%的训练数据,并具有更长的上下文长度(4000个 token),以处理更大的文档。Amazon Bedrock 提供的 Llama 2 模型已经过优化,可以在亚马逊云科技基础设施上提供快速响应,非常适合对话式应用场景。客户可以构建由130亿和700亿个参数的 Llama 2 模型驱动的生成式 AI 应用程序,且无需设置和管理任何基础设施。

三、Amazon CodeWhisperer 新功能将允许客户使用私有代码库安全地定制 CodeWhisperer 代码建议

Amazon CodeWhisperer 是一款基于 AI 的编程助手,它通过对数十亿行来自亚马逊和公开可用的代码进行训练,提高开发人员的生产力。虽然开发人员在日常工作中频繁使用 CodeWhisperer,但有时他们需要将其企业内部私有代码库(例如内部 API、代码库、软件包和类)整合到应用程序中,而这些代码都不属于 CodeWhisperer 的训练数据。内部代码的使用也是一个难题,因为说明文档有限,并且没有开发人员可以求助的公共资源或论坛。

Amazon CodeWhisperer 新定制功能将解锁生成式 AI 编程的全部潜力,通过安全地利用客户的内部代码库和资源提供定制化建议。这使得开发人员在各种任务中能够更准确地获得代码建议,从而节省时间。首先,管理员需要从源(例如 GitLab 或 Amazon S3)连接到他们的私有代码存储库,并调度一个作业来创建自己的定制内容。在创建定制内容时,CodeWhisperer 利用各种模型和上下文定制技术,学习客户的代码库并改进实时代码建议,从而使开发人员花更少的时间去寻找无差别的问题的正确答案,同时将更多时间投入到创建新的差异化体验上。管理员可以在亚马逊云科技控制台(Amazon Console)集中管理所有定制功能、查看评估指标、估算每个定制功能的性能,并有选择地将它们部署给公司内特定的开发人员,以限制对敏感代码的访问。

通过选择高质量的存储库,管理员可以确保 CodeWhisperer 提供的定制建议不包含已弃用的代码,以满足企业质量与安全标准。考虑到企业级安全和隐私,这项功能可以确保定制内容完全私密,而支持 CodeWhisperer 的底层基础模型在训练过程中不使用定制内容,能够保护客户宝贵的知识产权。该自定义功能将很快作为 CodeWhisperer 企业版的一部分在预览中提供给客户使用。此外,CodeWhisperer 的自定义设置默认确保了安全性,无论客户使用 Amazon CodeWhisperer 专业版还是企业版,在处理来自开发人员 IDE 的请求时,亚马逊云科技均不会存储或记录任何客户内容。

四、Amazon QuickSight 新生成式BI创作功能

Amazon QuickSight 是一个为云端构建的统一 BI 服务,能够创建交互式仪表盘、分页报告以及嵌入式分析,同时具备使用 QuickSight Q 进行自然语言查询的能力,因此企业的每位用户都能以他们偏好的格式获取所需的洞察。

通常情况下,商业分析师需要花费数小时使用 BI 工具来探索各种不同的数据源,添加计算、创建和完善可视化效果,然后将它们呈现在仪表盘中提供给业务利益相关者。要创建一个简单的图表,分析师首先必须找到正确的数据源、识别数据字段、设置过滤器,同时进行必要的个性化设置以实现良好的可视化效果。

服务商动态

百度首发量子领域大模型

2023-9-28 11:00:30

服务商动态

OpenAI计划进行重大更新 以更低的成本吸引开发者

2023-10-12 11:00:48

相关推荐